128 research outputs found

    Hardware Solutions for High Data Rate Modems

    Get PDF
    The exponentially-growing mobile data traffic imposes significant demands on the capacity of the mobile network. Fiber optic and microwave links are two main solutions for the mobile backhaul network, which provides connectivity between radio base station (RBS) sites and the switch sites. As compared to fiber, a microwave solution is much easier to deploy, however, its capacity is lower. This thesis is devoted to the design and implementation of modems supporting high data rate transmission. This thesis includes the design and implementation of one MMIC-based on- /off- keying (OOK) modem and two FPGA-based differential phase shift keying (D-QPSK) modems. The OOK modem is designed for short-distance applications. The D-QPSK modems are made for high capacity microwave radio applications. The OOK modulator is implemented in a heterojunction bipolar transistor (HBT) process, and is capable of transmitting data at rate of 14 Gbps. The OOK demodulator is implemented in a metamorphic high electron mobility transistor (mHEMT) process with a detection range of 10 to 60 GHz. An OOK link is set up and 10 Gbps transmission is achieved. For the D-QPSK scheme, a 2.5 Gbps and a 5 Gbps D-QPSK modem are implemented with FPGAs and microwave components. Modifications at the modulator and demodulator are explained, which doubles the data rate of the D-QPSK modem. It also enables the possibility of scaling up to even higher data rates. A point-to-point radio is demonstrated by using such a modem and commercial E-band RF front-end components, which achieves 5 Gbps full-duplex data transmission

    A Direct Carrier I/Q Modulator for High-Speed Communication at D-Band Using 130 nm SiGe BiCMOS Technology

    Get PDF
    This paper presents a 110-170 GHz direct conversion I/Q modulator realized in 130 nm SiGe BiCMOS technology with ft/fmax values of 250 GHz/ 370 GHz. The design is based on double-balanced Gilbert mixer cells with on-chip quadrature LO phase shifter and RF balun. In single-sideband operation, the modulator exhibits up to 9.5 dB conversion gain and has measured 3 dB IF bandwidth of 12 GHz. The measured image rejection ratio and LO to RF isolation are as high as 20 dB and 31 dB respectively. Meas-ured input P1dB is -17 dBm at 127 GHz output. The DC power con-sumption is 53 mW. The active chip area is 620 μm× 480 μm in-cluding the RF and LO baluns. The circuit is capable of transmit-ting more than 12 Gbit/s QPSK signal

    Non-Contact Detection of Vital Signs Based on Improved Adaptive EEMD Algorithm (July 2022)

    Get PDF
    Non-contact vital sign detection technology has brought a more comfortable experience to the detection process of human respiratory and heartbeat signals. Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method which can be used to decompose the echo data of frequency modulated continuous wave (FMCW) radar and extract the heartbeat and respiratory signals. The key of EEMD is to add Gaussian white noise into the signal to overcome the mode aliasing problem caused by original empirical mode decomposition (EMD). Based on the characteristics of clutter and noise distribution in public places, this paper proposed a static clutter filtering method for eliminating ambient clutter and an improved EEMD method based on stable alpha noise distribution. The symmetrical alpha stable distribution is used to replace Gaussian distribution, and the improved EEMD is used for the separation of respiratory and heartbeat signals. The experimental results show that the static clutter filtering technology can effectively filter the surrounding static clutter and highlight the periodic moving targets. Within the detection range of 0.5 m similar to 2.5 m, the improved EEMD method can better distinguish the heartbeat, respiration, and their harmonics, and accurately estimate the heart rate

    Substrateless Packaging for a D-Band MMIC Based on a Waveguide with a Glide-Symmetric EBG Hole Configuration

    Get PDF
    This paper presents a novel substrateless packaging solution for the D-band active e mixer MMIC module, using a waveguide line with a glide-symmetric periodic electromagnetic bandgap (EBG) hole configuration. The proposed packaging concept has the benefit of being able to control signal propagation behavior by using a cost-effective EBG hole configuration for millimeter-wave- and terahertz (THz)-frequency-band applications. Moreover, the mixer MMIC is connected to the proposed hollow rectangular waveguide line via a novel wire-bond wideband transition without using any intermediate substrate. A simple periodical nail structure is utilized to suppress the unwanted modes in the transition. Additionally, the presented solution does not impose any limitations on the chip\u27s dimensions or shape. The packaged mixer module shows a return loss lower than 10 dB for LO (70-85 GHz) and RF (150-170 GHz) ports, achieving a better performance than that of traditional waveguide transitions. The module could be used as a transmitter or receiver, and the conversion loss shows good agreement in multiple samples. The proposed packaging solution has the advantages of satisfactory frequency performance, broadband adaptability, low production costs, and excellent repeatability for millimeter-wave- and THz-band systems, which would facilitate the commercialization of millimeter-wave and THz products

    Variable High Precision Wide D-Band Phase Shifter

    Get PDF
    This paper proposes a new concept of designing compact high precision millimeter-wave wideband variable phase shifters. The phase shifter is implemented with a stacked shim with extremely short length of 0.9 mm and two waveguide flange adaptors with length of 0.5 mm. High precision phase shifting is achieved over entire D-band (110-170 GHz) by rotating the shim 90 degrees from aligned to perpendicular with consistent impedance matching performance. In addition, a glide-symmetric holey electromagnetic bandgap (EBG) structure is adopted to avoid wave leakage from the gap between the shim and the flange adaptors. A proof-of-concept (PoC) demonstrator is designed, manufactured, and tested. The measured results show that the designed stacked shim phase shifter with embedded EBG structure ensures return loss higher than 10 dB across 110-170 GHz with a 75 mu m airgap between waveguide flanges. The studied phase shifter provides a 0.88ffi phase shifting with each degree of mechanical rotation. The fabricated PoC phase shifter has a worst-case insertion loss of 0.92 dB and a return loss of 20 dB across the entire 110-170 GHz band and a maximum phase shift of 30 degrees. At 10 degrees phase shifting, the measured insertion loss is lower than 0.52 dB, and return loss is higher than 23 dB, respectively

    Demonstration of Flexible mmWave Digital Beamforming Transmitter using Sigma-Delta Radio-Over-Fiber Link

    Get PDF
    This work demonstrates a millimeter-wave digital beamforming transmitter based on a sigma-delta radio-over-fiber link. The digital beamforming is controlled from a central unit and distributed to a remote radio unit using a standardized quad small form-factor pluggable 28 (QSFP28) fiber connection. The experimental results demonstrate 26.2 GHz transmission with high-quality beamforming functionality up to 130 MHz effective radio bandwidth at 2.2 m wireless distance. The solution offers a flexible transmitter solution suitable for millimeter-wave distributed active antenna systems

    A Fully integrated D-band Direct-Conversion I/Q Transmitter and Receiver Chipset in SiGe BiCMOS Technology

    Get PDF
    This paper presents design and characterization of single-chip 110-170 GHz (D-band) direct conversion in-phase/quadrature-phase (I/Q) transmitter and receiver monolithic microwave integrated circuits (MMICs), realized in a 130 nm SiGe BiCMOS process with ft/fmax of 250 GHz/370 GHz. The chipset is suitable for low power wideband communication and can be used in both homodyne and heterodyne architectures. The Transmitter chip consists of a six-stage power amplifier, an I/Q modulator, and a LO multiplier chain. The LO multiplier chain consists of frequency sixtupler followed by a two-stage amplifier. It exhibits a single sideband conversion gain of 23 dB and saturated output power of 0 dBm. The 3 dB RF bandwidth is 31 GHz from 114 to 145 GHz. The receiver includes a low noise amplifier, I/Q demodulator and x6 multiplier chain at the LO port. The receiver provides a conversion gain of 27 dB and has a noise figure of 10 dB. It has 3 dB RF bandwidth of 28 GHz from 112-140 GHz. The transmitter and receiver have dc power consumption of 240 mW and 280 mW, respectively. The chip area of each transmitter and receiver circuit is 1.4 mm x 1.1 mm

    Transmitter and Receiver Circuits for a High-Speed Polymer Fiber-Based PAM-4 Communication Link

    Get PDF
    A high data rate RF-DAC and a power detector (PD) are designed and fabricated in a 250 nm indium phosphide (InP) double heterojunction bipolar transistor (DHBT) technology. A communication link using the Tx-Rx over polymer microwave fiber (PMF) is measured. The link consists of a pulse amplitude modulation (PAM) modulator and a PD as a demodulator, as well as a one-meter-long dielectric waveguide. The working frequency range of the complete link is verified to be 110–150 GHz. The peak output power of the PAM modulator is 5 dBm, and it has a −3 dB bandwidth of 43 GHz. The PD consists of a parallel connected common emitter configured transistor and a common base configured transistor to suppress the odd-order harmonics at the PD’s output, as well as a stacked transistor to amplify the output signal. Tx and Rx chips, including pads, occupy a total area of only 0.83 mm2. The PMF link can support a PAM-4 signal with 22 Gbps data transmission, and a PAM-2 signal with 30 Gbps data transmission, with a bit error rate (BER) of <10−12, with demodulation performed in real time. Furthermore, the energy efficiency for the link (Tx + Rx) is 4.1 pJ/bit, using digital data input and receiving PAM-2 output (5.6 pJ/bit for PAM-4)

    Integrated-EBG Ridge Waveguide and Its Application to an E-Band Waveguide 32 732 Slot Array Antenna

    Get PDF
    A methodology of designing an E-band waveguide 32 732 slot array antenna with high-efficiency and low-cost manufacturing characteristics is proposed in this article, which is based on an integrated electronic bandgap (EBG) ridge waveguide designed by integrating a cross rectangle-hollow EBG structures in the conventional ridge waveguide. The integrated EBG structure intercepts the leakage from the unconnected gap in between the two metallic plates of the waveguide, and then it decreases the manufacturing cost without using the diffusion bonding technology and multi-layer welding assembly process. The design guideline is discussed, and then the antenna is fabricated. The measured radiation characteristics are in good agreement with predicted ones, which confirms that the proposed cross rectangle-hollow EBG structures is an attractive candidate of high-performance millimeter wave antenna

    Millimeter-Wave Multi-Channel Backscatter Communication and Ranging with an FMCW Radar

    Get PDF
    A multi-channel backscatter communication and radar sensing system is proposed and demonstrated in this paper. Frequency modulated continuous wave (FMCW) radar ranging is integrated with simultaneous uplink data transmission from a self-packaged active radio frequency (RF) tag. A novel package solution is proposed for the RF tag. With the proposed package, the RF tag can transmit a 32-QAM signal up to 2.5 Gbps and QPSK signal up to 8 Gbps. For a multi-tag scenario, we proposed using spread spectrum code to separate the data from each tag. In this case, tags can be placed at arbitrary locations without adjacent channel interference. Proof-of-concept simulations and measurements are demonstrated. A 625 Mbps data rate is achieved in a dual-tag scenario for two tags
    • …
    corecore